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Abstract

The great usefulness of uniaxial visco-elastic n&despecially in highway engineering pavement thecomposites
and other civil engineering disciplines were thasmn for undertaking the trial to find a completduson for the
generalization of Kelvin-Voigt body. Here the elarteof higher rank than velocities of strain angst are considered.
Carson’s transformation simultaneously with residubigorem is used for deriving solutions. The intraed procedure can
be also used for more complicated differentialrdegral forms of constitutive equations, as wellf@snon homogenous
initial conditions. Finally, a simple task, whetetinitial form of stress-strain relation limitedl the case of Burgers body is
examined.
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1. Introduction

The origins of this treatise come from [1-6] papérke list of scientific and application works
concerning elementary visco-elastic models probatdlude more than hundred titles, due to that we
limit the bibliography only to Reiner [7] and Nowad8] monographs in which the authors made a
survey of rheological problems and models. It ipamant to note that Reiner made a full survey of
rheological models in relation to physical ruleshiler Nowacki showed solving methods of
rheological problems by means of Laplace transfanch generalized functions.

The recalled monographs are rather old, but theintents has being repeated in many
contemporary papers and can be treated as cofstanotation. On the other hand, taking into account
present-day paper [9], we can see the advancerhtarhwlated earlier, in [7], problems.

In our approach we focus on benefits, which conmmfrmathematical formalism, i.e. from
admissible solutions forms for assumed constitugigaation. Although the model was used in many
works, the below results have been not noticedezanhd only due to that it seems to be interedting
be presented.

On the basis of Hohenemser and Prager [7] postigiates assume a general linear body, which is
linear in Boltzmann superposition [10] sense. Wafioe our analyses to linear visco-elasticity,
excluding inner constrains of St. Venant's typepidgl for Schwedoff model [11]. Only the
differential form of constitutive relation is codsred. For example, for several elementary models w
have:

- 0a, +0a, =¢b, - Maxwell, (1.1)
- 0a, =¢eb, + &b, - Kelvina-Voigt, (1.2)
- Oa, +0a, +0a, =¢b, +£Eb, - Burgers, (1.3)
- 0a, +0a, =¢b, +€b, - Zener; (1.4)

where g, &, &, by, by, b, — are visco-elastic material constants,
O, € - are tensors of stress and strain, reduced falyzed one dimensional problem,
number of dots over characters means the ranknef dierivative.

Additionally we assume that initial conditions dremogenous, i.e. at time momett=0 we
adopt

o(0)=0, 6(0)=0, £(0)=0, ¢(0)=0. )



In further part of the work, during the derivatioh particular formulae, there i&,, but all the

time having in the mind its value.
In mathematical sense (1.1-4) is a cutting of tlleWing formula

o a(m)o o a(n)e
= b ) 3
”lel:zwam 31 m; FY0 (3

Let us now generalize, in a simple way, models-@).taking into account (3) with m=0, 1, 2 and
n=0,1,2i.e.—

2 a(m)o- 2 a(n)a
2 B S = > bnm, furthermore a, =1. 4)

=01,

For recognizing the properties of created constrectlation (4), the Carson transform is applieet.
us now recall its definition

to o0

cli(t)]=p if (t)exp(- pt)dt = (p). (5)

2. The solution of the problem
Operating with (5) onto (4) we arrive at

O ap°+pa+l_G ap’+pa+l

T = , (6)
b, p, +pB, +B, b, (p - pl)(p - pz)
where
b, b,
=1 B =29 6.1
By b, B, b, (6.1)
p,, p, - are the roots of denominator in (6) calculatgdhe formula
-1f,28). 5=
pllz_E_Boi A), A_(Bl) _4[30- (7)
We have to analyze the set of following cases —
) A>0 - p, Zp, Z0UR,
(In A<0 - p,=p,UC, p,=0gtiay,
_ - B
(D) A=0 - P, = > 70,
(V) A=0 - p1,2=0.

Looking for original s(t) = C_l['s'] we modify the relation (6) to the appropriate foadequate to
apply faltung theorem —



£, = §(p(¢j , ®)

pl (p-p)p-p,)

where we denote

L(p)= Fa, + pa, +1. (8.1)

By virtue of Carson transformation we have

C[1E]:—pf(0)+pir - pf, (9)
which is valid in th(e )case of homogenous initiah@ditions. Denoting
. L{p
cli@)]=p— P and (10)
ol (p-p.)p-p.)
) (11)

(P-p)p-Pp,)

we can directly use the faltung form

eb, = T o(t)f(t-1)dt = T ot -1)f (1)dr, (12)

=0 =0

when the load functiom(t) is defined.

To find the originalf(t)C‘llFJ the method based on residuum theorem connectbdaitian’s
lemma is adopted, its essence consists in usiniptimela

ciffl=> Re{eprt) @] . (13)

D(p)
where N(p) and D(p) mean respectively — numerator and denominatoataiiral expression.

The results obtained below are illustrated by ushegload function concerning constant stress
0, # 0 in time intervalt O(t,;t,) and entirely unloading in the time period] (t1;00> as follows —

o =0, [H(t-t,)-H(t-t,)]. (14.1)

while H(t) is Heavisidea's step function. Excluding infiniteal time interval surroundind, and
t, - time moments the stress has constant value and this implies

a, =a, =0 in relation (4). 14.2)
3. Solutions in particular variants

3.1. Ad. (I)



Two roots of denominator in (6) are real and noroz&he values of these roots are singular
points for relation (6), as well as for (8). Usifid) and (13) we arrive at

foFZRE{GX%pt)( o) J (15)

p-p)p-p,)

It is seen from (15), that we have to consider dditenal singular pointp,=0. As a
consequence we obtain following residua

| L(p) }
~ | exppt) , 16.1
P = | AP 3 16
P, - exp(ﬂtj L(p) , (16.2)
RCPICEER 1NN
p, - [eXF{EJﬂ : (16.3)
p)lp-p)] .,

The sought for function and its time derivative sead

fo) = Bi L1 {exp(plt)L(pl)_exp(pzt)L(pz)} | an
o Pi=P; P P2
fi =~ lexep )L ) -exelp )L (] a9

By virtue of (12) and assumption (14.1) the stgaiocess is described by functions —
L L
bzs(l) = O—_O{M [1_ exdpl(t - to))] _M[l_ exdpz (t - to))]} -
Po=P [ Py P2

0o {l—exdpl(t ~t,)) _1—exp(p,(t —to))}

42 p, =P, P. P,

(19.1)

whent,<t<t, and

L(p,)

o, | b explp,t)exp(- pit,) - expl- pito)] +
b,eqy =—2 '
0 P2 — P, _%exdpzt)[exd— pztl) - eXF(_ pzto)]

2

o % [eXF(_ pltl) - eXF(_ pltO)] *

) p,-p, _%[Qxd— pztl) - EXF(_ pzto)]
2

—

(19.2)




if t>t,.
3.2. Ad. (Il)

In this case the roots of denominator of (6) angjuapated complex, they could be presented in an
alternative algebraic or exponential form

p, =P, =0, *ia, =exgY, *iY,)=p,expziV,); i=v-1. (20.1)

Together withp, =0 the roots of (13) form the set of singular poinecessary to find the
originalf(”). Appropriately for:p,, p, andp, the residua are -
1

0 - (20.2)
0
o \exp(lat) (o, +ia,)
p, =0, t1a; - eXF( IG q +i(Xl , (20.3)
p,=a,-ia, -  exda, t\exp(—la ) L(g, ia ) (20.4)

-2ia, o, —ia,

Applying exponential form we can write

L(a, *ia,)
Oy, xi0, @2 oy xia,

=exgA, i A,). (20.5)

Using Euler’s formulae, (20.4) and summing (20.1326ve find the sought for function

_ 1, expagt+A,) L explagt+A,)
fy = Bo —I(Xl sk{l(at+A)] Bo —0(1 sinot+A,) (21)

and their time derivative

1

exr(a t+A )L—sm(a t+A )+cos(0( t+A )} (22)

The load function (14.1) yield the strain proces$aiows
bze(u) =0y eXF(Bo)

{exp{a (t-t )]L(0 sin(o,(t—t,)+B,)+codo, (t—t, )+ Bl)} (23.1)

1

{% sin(B, )+ cos(Bl)}

1

for t,<t<t, and



bzs(n) =0, exr{a ot + Bo]

{exr{— aotl]{g—‘l’ sin(a,(t-t,)+B,)+coda, (t—t, )+ Bl)} + (23.2)

1

—exp- aoto]{%sin(al(t ~t,)+B,)!+coda, (t—t,) + Bl)}}

while t > t; and after simplifying denotation

exdA, i A,)) 1

dpxio, o (,xia,)f ex7{B, 1B, (23.3)

3.3. Ad. (1ll)
B

In this variant we have double real non null rpot= p, = > which, together wittp, =0, are

also singularity points for (13). The residuum fay we obtain, as previously,

0, =0 -+ (24.1)

0

To find residuum for a double root we use the felfg rule

p=p,=—F0 {i{% L(p)}p:pl =

2 dp P , (24.2)
- &P (o)1) i )]

(N

The sought forf ) - function we read
Botj
exp - ——

_1 2 Bj B ( Bﬂ
f)=—+4—F>—~——2|L| -2 |t-1)-=2L| -2 25
()B0 (Bo)z {(2()2 > (25)
and its time derivative

ey
f.||| =4—2(’91t+’9o)v (26)
" (B,)
when we denote

= Bo[_Bo) | _Bo

9 = > L( 2)(122) > (26.1)



Soz(&jZL[—&j+L(—&j[&+lj - &+1. (26.2)
2 2 2 N\ 2 @2 2

The strain process for the loading function (14.&2d (26) implies the following result

b€ = (?3%{_8_20 + exp(—wj[[s—zo +(t- to)}} (27.1)

whent,<t<t, and

ol ,
R R

3.4. Ad. (IV)

(27.2)

Similar as above we have double real, but in tage¢null rootp, = p, =0. Taking into account
p, =0 we have a triple singularity point, this impli¢gtresiduum value as

o) bl -

Po =P =P = {
o (28)

2! dp?

= {# [t2L (p) + 2t (p)]+ I'—'(IO)}

p=0

The functionsf,,y and its’ time derivativef(,v) have look like

f(|v) =%(t2 + Za1+ Za2)- (29)

foy =t+a. (30)

Assuming (14.1-2) and (30) we arrive at

t2 -t > t2 -t °
b,€ ) :0{ 0 +(t—to)a1} - Gy 0 (31.1)
for t,<t<t, and
b,g) =0 ! (t,—t,)+ 28] - %[th —t(t, +t,)+t,(t, ] (31.2)
sincet > t;.



4. The case of Burgers model

Treating the above results as a generalizationamgyooceed to particular models, here — to the
Burgers model. In the case of (l), setting up —

B, =0 (32)
we obtain

b,

P, = 0 and P, = _[31 =T (33)
b,
Again, we have a double singularity point, now for
Po=p, =0, (34)
the second one, non zero,ps. The values of residua are
0, =p =0 - { d [exp(pt)L(p)]} _
dp p+B, ],
. (35.1)
_ {exp(pt){ L)+ L(p)p+B.)- L(p)}}
(p + Bl)2 p=0
P, =—h - {wtz)l'(p)} : (35.2)
p p=-B;
The above results in

1
fe)= (B )2 [(t + ai)Bl -1+ exr'(_ Blt)L (_ Bl)] and (36)

1
f(B.) = Bi[l_ exd_ Blt )L (_ [31)] . (37)

1

Considering the load function (14.1) we arrive at

b28 = (I:(;O)z {(t - tO)Bl - [1_ exd— Bl(t - to))]L(_ Bl)} (38.1)

whent,<t<t, and

Oy

(B.)

if t>t;; now, taking into account (14.2) we get the Busgeodel

2 [_ Bl(tl - to) + EXp(— Blt)(eXdBltl) - eXdBlto))L(_ Bl)] (38.2)

b28(B.) =



2

_ b, b b, b, b,
€)= —0 (t, - t,)+exg -2t Tt |—exp 2t |[p, (39.2
SN CURERE e e S R O

for t>1t,.

S(Bl)zoo(SZ)z{%(t—t 1+ex;{ % H tp<t<t;  (39.1)
1

7. References

[1] Maxwell J.C. -On the Dynamical Theory of Gases, Philbgans. R. Soc., 1867.

[2] Voigt W. —Abhandlungen der Kdniglichen Gesellschaft von Wissleaften zu Goéttingemol. 36, 1890.

[3] Thomson W. -Math. And Phys. Paper8, Cambridge, 1890; (Kelvin W. Encyclopedia Britannicav.
3, London, 1875).

[4] Poynting J.H., Thomson J.JPtoperties of MatterLondon, 1902.

[5] Burgers I. M. —First Report of Viscosity and Plasticithmsterdam, 1935.

[6] Zener C. -Elasticity and Inelasticity of Metal€hicago, 1948.

[71 Reiner M. -Rheology edited by S. Fligge Encyclopedia of Physics, Wl.Springer, Berlin-Gottingen-
Heidelberg, 1958.

[8] Nowacki W. —Theory of Creeffln Polish), ARKADY. Warszawa, 1963.

[91 Wang, H. F. -Theory of Linear PoroelasticityPrinceton University Press, 2000.

[10] Boltzmann L. —Zur Theorie der elastischen Nachwirkung&itzungsber. Kaiserlich. Akad. Wiss., Wien,
Math.-Naturwiss. Classe 70 (2), 1874.

[11] Schwedoff T.N., J. De Physiquel889,N8 (2); 1890, No 9 (2).

Rozwiazanie kompletne uogdlnionego modelu Kelvina-Voigta

Uzytecznd¢ jednowymiarowych modeli lepkosprystych, szczeg6lnie w zagadnieniach nawierzchnigalnych,
kompozytach i innych dziedzinach zimierii lgdowej stata s przyczyn podgcia préby znalezienia kompletnego
rozwigzania uogoélnionego modelu Kelvina-Voigta, przy czynmodelu uwzgidniono take przyspieszenia tak nagpen
jak i odksztatca. Do uzyskania rozwzan wykorzystano transformagiCarsona oraz twierdzenie o residuach. Zastosowana
procedura meze by takze wyta w przypadkach bardziej Zionych zwizkéw konstytutywnych w formie ediczkowej lub
catkowej, jak réwnie przy niejednorodnych warunkach petkowych. Na zakfdczenie rozpatrzono szczegoélny przypadek
analizowanego uogoélnienia tj. model Burgersa.



